By Topic

Torque-velocity control algorithm for on-line obstacle avoidance for mobile manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Omrcen, D. ; Jozef Stefan Inst., Ljubljana, Slovenia ; Nemec, B. ; Zlajpah, L.

The paper deals with obstacle avoidance for a mobile manipulator. Mobile manipulator consists of a velocity controlled mobile platform and a torque controlled robot manipulator. Therefore combined torque-velocity control is used. In spite of a combined control the system maintains dynamic compensation. The proposed algorithm enables obstacle avoidance in real time. The platform has integrated ultrasonic sensors that detect obstacles. Obstacles near the platform generate virtual repulsive velocity in the space and the platform moves away from the obstacles. The manipulator avoids the obstacles using the action-reaction principle without using any sensors. If an obstacle collides with the manipulator, the manipulator consequently moves away from the obstacle because the control assures high compliance of the mobile manipulator in the space. The behaviour of the end-effector in the task space is stiff. The advantage of the manipulator placed on a mobile platform over the fixed-base manipulator is grater workspace while the other motion properties such as accuracy and dynamic properties are preserved.

Published in:

Industrial Technology, 2003 IEEE International Conference on  (Volume:2 )

Date of Conference:

10-12 Dec. 2003