Cart (Loading....) | Create Account
Close category search window
 

Configuring a wafer-scale two-dimensional array of single-bit processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Boubekeur, A. ; Nat. Polytech. Inst. of Grenoble, France ; Patry, J.-I. ; Saucier, G. ; Trilhe, J.

An overview of the ELSA (European large SIMD array) project, which uses a two-level strategy to achieve defect tolerance for wafer-scale architectures implemented in silicon, is presented. The target architecture is a 2-D array of processing elements for low-level image processing. An array is divided into subarrays called chips. At the chip level, defect tolerance is proved by an extra column of PEs (processing element) and bypassing techniques. At the wafer level, a double-rail connection network is used to construct a target array of defect-free chips that is as large and as fast as possible. Its main advantage is being independent of chip defects, as it is controlled from the I/O pads. An algorithm for constructing an optimized two-dimensional array on a wafer containing a given number of defect-free PEs and connections, a method to program the switches for the target architecture found by the algorithm, and software for programming the switches using laser cuts are discussed.<>

Published in:

Computer  (Volume:25 ,  Issue: 4 )

Date of Publication:

April 1992

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.