By Topic

MCMC-based peak template matching for GCxGC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mingtian Ni ; Dept. of Comput. Sci. & Eng., Nebraska Univ., Lincoln, NE, USA ; Qingping Tao ; Reichenbach, S.E.

Comprehensive two-dimensional gas chromatography (GCxGC) is a new technology for chemical separation. Peak template matching is a technique for automatic chemical identification in GCxGC analysis. Peak template matching can be formulated as a largest common point set problem (LCP). Minimizing Hausdorff distances is one of the many techniques proposed for solving the LCP problem. This paper proposes two novel strategies to search the transformation space based on Markov chain Monte Carlo (MCMC) methods. Experiments on seven real data sets indicate that the transformations found by the new algorithms are effective and searching with two Markov chains is much faster than searching with one Markov chain.

Published in:

Statistical Signal Processing, 2003 IEEE Workshop on

Date of Conference:

28 Sept.-1 Oct. 2003