By Topic

Hierarchical Markov models for wavelet-domain statistics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Z. Azimifar ; Dept. of Syst. Design Eng., Waterloo Univ., Ont., Canada ; P. Fieguth ; E. Jernigan

There is a growing realization that modeling wavelet coefficients as statistically independent may be a poor assumption. Thus, this paper investigates two efficient models for wavelet coefficient coupling. Spatial statistics which are Markov (commonly used for textures and other random imagery) do not preserve their Markov properties in the wavelet domain; that is, the wavelet-domain covariance Pw does not have a sparse inverse. The main theme of this work is to investigate the approximation of Pw by hierarchical Markov and non-Markov models.

Published in:

Statistical Signal Processing, 2003 IEEE Workshop on

Date of Conference:

28 Sept.-1 Oct. 2003