By Topic

On capturing likelihood disparity for unsupervised image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guoliang Fan ; Sch. of Electr. & Comput. Eng., Oklahoma State Univ., Stillwater, OK, USA ; Xiaomu Song

In this paper, we study unsupervised Bayesian image segmentation approach which involves capturing model likelihood disparities among different texture features with respect to a global statistical model. Specifically, wavelet-domain hidden Markov models are used to characterize the global textural behavior of images in the wavelet-domain. Three clustering methods, i.e., the K-mean, a soft clustering and a multiscale clustering are studied to convert the unsupervised segmentation problem into the self-supervised process by identifying the reliable training samples. In particular, multiscale clustering involves multiple context models from different scales for context fusion. The simulation results on synthetic mosaics show that the proposed unsupervised segmentation algorithm can achieve high classification accuracy that is close to the supervised one.

Published in:

Statistical Signal Processing, 2003 IEEE Workshop on

Date of Conference:

28 Sept.-1 Oct. 2003