By Topic

Automatic writer identification using connected-component contours and edge-based features of uppercase Western script

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Schomaker, L. ; AI Inst., Groningen Univ., Netherlands ; Bulacu, M.

In this paper, a new technique for offline writer identification is presented, using connected-component contours (COCOCOs or CO3s) in uppercase handwritten samples. In our model, the writer is considered to be characterized by a stochastic pattern generator, producing a family of connected components for the uppercase character set. Using a codebook of CO3s from an independent training set of 100 writers, the probability-density function (PDF) of CC's was computed for an independent test set containing 150 unseen writers. Results revealed a high-sensitivity of the CO3 PDF for identifying individual writers on the basis of a single sentence of uppercase characters. The proposed automatic approach bridges the gap between image-statistics approaches on one end and manually measured allograph features of individual characters on the other end. Combining the CO3 PDF with an independent edge-based orientation and curvature PDF yielded very high correct identification rates.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:26 ,  Issue: 6 )