Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Offline recognition of unconstrained handwritten texts using HMMs and statistical language models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

This paper presents a system for the offline recognition of large vocabulary unconstrained handwritten texts. The only assumption made about the data is that it is written in English. This allows the application of statistical language models in order to improve the performance of our system. Several experiments have been performed using both single and multiple writer data. Lexica of variable size (from 10,000 to 50,000 words) have been used. The use of language models is shown to improve the accuracy of the system (when the lexicon contains 50,000 words, the error rate is reduced by ∼50 percent for single writer data and by ∼25 percent for multiple writer data). Our approach is described in detail and compared with other methods presented in the literature to deal with the same problem. An experimental setup to correctly deal with unconstrained text recognition is proposed.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:26 ,  Issue: 6 )