By Topic

Particle swarm optimization versus genetic algorithms for phased array synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. W. Boeringer ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; D. H. Werner

Particle swarm optimization is a recently invented high-performance optimizer that is very easy to understand and implement. It is similar in some ways to genetic algorithms or evolutionary algorithms, but requires less computational bookkeeping and generally only a few lines of code. In this paper, a particle swarm optimizer is implemented and compared to a genetic algorithm for phased array synthesis of a far-field sidelobe notch, using amplitude-only, phase-only, and complex tapering. The results show that some optimization scenarios are better suited to one method versus the other (i.e., particle swarm optimization performs better in some cases while genetic algorithms perform better in others), which implies that the two methods traverse the problem hyperspace differently. The particle swarm optimizer shares the ability of the genetic algorithm to handle arbitrary nonlinear cost functions, but with a much simpler implementation it clearly demonstrates good possibilities for widespread use in electromagnetic optimization.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:52 ,  Issue: 3 )