Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Interictal spike detection using the Walsh transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Adjouadi, M. ; Dept. of Electr. & Comput. Eng., Florida Int. Univ., Miami, FL, USA ; Sanchez, D. ; Cabrerizo, M. ; Ayala, M.
more authors

The objective of this study was to evaluate the feasibility of using the Walsh transformation to detect interictal spikes in electroencephalogram (EEG) data. Walsh operators were designed to formulate characteristics drawn from experimental observation, as provided by medical experts. The merits of the algorithm are: 1) in decorrelating the data to form an orthogonal basis and 2) simplicity of implementation. EEG recordings were obtained at a sampling frequency of 500 Hz using standard 10-20 electrode placements. Independent sets of EEG data recorded on 18 patients with focal epilepsy were used to train and test the algorithm. Twenty to thirty minutes of recordings were obtained with each subject awake, supine, and at rest. Spikes were annotated independently by two EEG experts. On evaluation, the algorithm identified 110 out of 139 spikes identified by either expert (True Positives=79%) and missed 29 spikes (False Negatives=21%). Evaluation of the algorithm revealed a Precision (Positive Predictive Value) of 85% and a Sensitivity of 79%. The encouraging preliminary results support its further development for prolonged EEG recordings in ambulatory subjects. With these results, the false detection (FD) rate is estimated at 7.2 FD per hour of continuous EEG recording.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:51 ,  Issue: 5 )