By Topic

Cultured neurons coupled to microelectrode arrays: circuit models, simulations and experimental data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Martinoia, S. ; Neuroengineering & Bio-nanoTechnol. Group, Univ. of Genova, Italy ; Massobrio, P. ; Bove, M. ; Massobrio, G.

The purpose of this paper is to characterize the neuron-microelectrode junction, based on the equivalent electric-circuit approach. As a result, recording of action potentials can be simulated with a general-purpose circuit simulation program such as HSPICE. The response of the microelectrode was analyzed as a function of parameters such as sealing resistance and adhesion conditions. The models of the neuron and microelectrode implemented in HSPICE were first described. These models were used to simulate the behavior of the junction between a patch of neuronal membrane (described by the compartmental model) and a microelectrode.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:51 ,  Issue: 5 )