By Topic

Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Simard, J.-R. ; DRDC Val-cartier, Val-Belair, Que., Canada ; Roy, G. ; Mathieu, P. ; Larochelle, V.
more authors

In atmospheric sensing, one application that has demonstrated several impressive successes over the last two decades is the light detection and ranging (LIDAR). Elastic LIDAR has shown an important capability in providing aerosol density and spatial distribution from a standoff position. However, it provides limited information on the material composition of the aerosol component. On the other hand, inelastic LIDARs (including laser-induced fluorescence and Raman LIDARs) measure the spectrally distributed returned signal that may contain important clues about the nature of the scatterers. In order to investigate the capability of these LIDARs in characterizing bioaerosols from a standoff position, Defence Research & Development Canada initiated a three-year program in spring 1999, named SINBAHD (Standoff Integrated Bioaerosol Active Hyperspectral Detection). The aim of the program was to investigate the sensitivity and discrimination capabilities of an inelastic LIDAR based on the intensified range-gated spectral detection of laser-induced fluorescence. An exploratory prototype based on this technique has shown sensitivity of a few living bioaerosol particles per liter of air for a range of 1.4 km at night. Furthermore, based on spectral signatures measured during open-air releases, good discrimination capabilities were obtained between Bacillius subtilis var globiggi (BG) and Erwinia herbicola (EH). These results agree well with a performance model using Raman returns from atmospheric nitrogen as a calibration tool.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 4 )