By Topic

Analysis of a phase change energy storage system for pulsed power dissipation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Krishnan, S. ; Cooling Technol. Res. Center, Purdue Univ., West Lafayette, IN, USA ; Garimella, Suresh V.

The melting of a phase change material in a container of rectangular cross-section with multiple discrete heat sources mounted on one side is investigated for electronics cooling by latent heat energy storage. This numerical study focuses on the thermal management issues that arise when electronic components experience sudden surges in power dissipation. The transient response of the energy storage system to short pulses in power dissipation is studied. Convective cooling using air-cooled heat sinks on the sides of the containment remote from the heat sources provides for heat rejection to ambient air. The analysis is performed under different pulse frequencies. Different aspect ratios for the containment volume as well as different locations for the heat sources are studied in order to identify an optimal arrangement. Conduction and convection in the phase change material as well as conduction through the containment walls are considered in the computations. The constitutive equations are implicitly solved using a fully transient method on fixed orthogonal co-located finite volumes. The system is characterized based on the rate of heat absorption as well as the maximum temperatures experienced at the heat sources. Improvements that can be made in the application of latent heat energy storage to electronics cooling applications are discussed based on the results from the present study.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:27 ,  Issue: 1 )