By Topic

Scalar equations for synchronous Boolean networks with biological applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Farrow, C. ; Dept. of Math., Univ. of Nebraska, Omaha, NE, USA ; Heidel, J. ; Maloney, J. ; Rogers, J.

One way of coping with the complexity of biological systems is to use the simplest possible models which are able to reproduce at least some nontrivial features of reality. Although two value Boolean models have a long history in technology, it is perhaps a little bit surprising that they can also represent important features of living organizms. In this paper, the scalar equation approach to Boolean network models is further developed and then applied to two interesting biological models. In particular, a linear reduced scalar equation is derived from a more rudimentary nonlinear scalar equation. This simpler, but higher order, two term equation gives immediate information about both cycle and transient structure of the network.

Published in:

Neural Networks, IEEE Transactions on  (Volume:15 ,  Issue: 2 )