By Topic

Entropy-based generation of supervised neural networks for classification of structured patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Hsien-Leing Tsai ; Dept. of Electr. Eng., Nat. Sun Yat-Sen Univ., Kaohsiung, Taiwan ; Shie-Jue Lee

Sperduti and Starita proposed a new type of neural network which consists of generalized recursive neurons for classification of structures. In this paper, we propose an entropy-based approach for constructing such neural networks for classification of acyclic structured patterns. Given a classification problem, the architecture, i.e., the number of hidden layers and the number of neurons in each hidden layer, and all the values of the link weights associated with the corresponding neural network are automatically determined. Experimental results have shown that the networks constructed by our method can have a better performance, with respect to network size, learning speed, or recognition accuracy, than the networks obtained by other methods.

Published in:

Neural Networks, IEEE Transactions on  (Volume:15 ,  Issue: 2 )