Cart (Loading....) | Create Account
Close category search window
 

Adaptive alpha-trimmed mean filters under deviations from assumed noise model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oten, R. ; IC-Media Corp, Santa Clara, CA, USA ; de Figueiredo, Rui J.P.

Alpha-trimmed mean filters are widely used for the restoration of signals and images corrupted by additive non-Gaussian noise. They are especially preferred if the underlying noise deviates from Gaussian with the impulsive noise components. The key design issue of these filters is to select its only parameter, α, optimally for a given noise type. In image restoration, adaptive filters utilize the flexibility of selecting α according to some local noise statistics. In the present paper, we first review the existing adaptive alpha-trimmed mean filter schemes. We then analyze the performance of these filters when the underlying noise distribution deviates from the Gaussian and does not satisfy the assumptions such as symmetry. Specifically, the clipping effect and the mixed noise cases are analyzed. We also present a new adaptive alpha-trimmed filter implementation that detects the nonsymmetry points locally and applies alpha-trimmed mean filter that trims out the outlier pixels such as edges or impulsive noise according to this local decision. Comparisons of the speed and filtering performances under deviations from symmetry and Gaussian assumptions show that the proposed filter is a very good alternative to the existing schemes.

Published in:

Image Processing, IEEE Transactions on  (Volume:13 ,  Issue: 5 )

Date of Publication:

May 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.