Cart (Loading....) | Create Account
Close category search window
 

Interconnect-based system-level energy and power prediction to guide architecture exploration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wadekar, S.A. ; IBM Corp., East Fishkill, NY, USA ; Parker, A.C.

We present a novel technique to predict energy and power consumption in an electronic system, given its behavioral specification and library components. The early prediction gives circuit designers the freedom to make numerous high-level choices (such as die size, package type, and latency of the pipeline) with confidence that the final implementation will meet power and energy as well as cost and performance constraints. Our unique statistical estimation technique associates low-level, technology dependent physical and electrical parameters, with expected circuit resources and interconnect. Further correlations with switching activity yield accurate results consistent with implementations. All feasible designs are investigated using this technique and the designer may tradeoff between small size, high speed, low energy, and low power. The results for designs of two popular signal processing applications, predicted prior to synthesis, are within 10% accuracy of power estimates performed on synthesized layouts.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:12 ,  Issue: 4 )

Date of Publication:

April 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.