By Topic

Blocking in all-optical networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Sridharan ; Indian Inst. of Sci., Bangalore, India ; K. N. Sivarajan

We present an analytical technique of very low complexity, using the inclusion-exclusion principle of combinatorics, for the performance evaluation of all-optical, wavelength-division multiplexed networks with no wavelength conversion. The technique is a generalized reduced-load approximation scheme which is applicable to arbitrary topologies and traffic patterns. One of the main issues in computing blocking probabilities in all-optical networks is the significant link load correlation introduced by the wavelength continuity constraint. One of the models we propose takes this into account and gives good results even under conditions with high link load correlation. Through numerous experiments we show that our models can be used to obtain fast and accurate estimates of blocking probabilities in all-optical networks and scale well with the path length and capacity of the network. We also extend one of our models to take into account alternate routing, in the form of Fixed Alternate Routing and Least Loaded Routing.

Published in:

IEEE/ACM Transactions on Networking  (Volume:12 ,  Issue: 2 )