By Topic

Analyzing peer-to-peer traffic across large networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Sen ; AT&T Labs.-Res., USA ; Jia Wang

The use of peer-to-peer (P2P) applications is growing dramatically, particularly for sharing large video/audio files and software. In this paper, we analyze P2P traffic by measuring flow-level information collected at multiple border routers across a large ISP network, and report our investigation of three popular P2P systems-FastTrack, Gnutella, and Direct-Connect. We characterize the P2P traffic observed at a single ISP and its impact on the underlying network. We observe very skewed distribution in the traffic across the network at different levels of spatial aggregation (IP, prefix, AS). All three P2P systems exhibit significant dynamics at short time scale and particularly at the IP address level. Still, the fraction of P2P traffic contributed by each prefix is more stable than the corresponding distribution of either Web traffic or overall traffic. The high volume and good stability properties of P2P traffic suggests that the P2P workload is a good candidate for being managed via application-specific layer-3 traffic engineering in an ISP's network.

Published in:

IEEE/ACM Transactions on Networking  (Volume:12 ,  Issue: 2 )