By Topic

Realization of polymeric optical integrated devices utilizing organic light-emitting diodes and photodetectors fabricated on a polymeric waveguide

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Ohmori, Yutaka ; Collaborative Res. Center for Adv. Sci. & Technol., Osaka Univ., Japan ; Kajii, H. ; Kaneko, M. ; Yoshino, Katsumi
more authors

Direct fabrication of organic light-emitting diodes (OLEDs) and organic photodetectors (OPDs) on polymeric substrates, i.e., polymeric waveguide substrates to form flexile optical integrated devices is demonstrated. The OELD and OPD were fabricated by organic molecular beam deposition (OMBD) technique on a polymeric or a glass substrate, for comparison. The device fabricated on a polymeric substrate shows similar device characteristics to that on a glass substrate. Optical signals of faster than 100 MHz have been created by applying pulsed voltage directly to the OLED utilizing diamine derivative, or rubrene or porphine doped in 8-hydoxyquinolinum aluminum derivatives, as an emissive layer. Electrical signals are successively converted to optical signals for optical transmission of moving picture signals with OLED fabricated on a polymeric waveguide. OPDs utilizing phthalocyanines derivatives with superlattice structure provide increased pulse response with input optical signals, and the OPD with the cutoff frequency of more than 5 MHz has been realized.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:10 ,  Issue: 1 )