By Topic

Systematic integration of parameterized local search into evolutionary algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bambha, N.K. ; Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA ; Bhattacharyya, S.S. ; Teich, J. ; Zitzler, E.

Application-specific, parameterized local search algorithms (PLSAs), in which optimization accuracy can be traded off with run time, arise naturally in many optimization contexts. We introduce a novel approach, called simulated heating, for systematically integrating parameterized local search into evolutionary algorithms (EAs). Using the framework of simulated heating, we investigate both static and dynamic strategies for systematically managing the tradeoff between PLSA accuracy and optimization effort. Our goal is to achieve maximum solution quality within a fixed optimization time budget. We show that the simulated heating technique better utilizes the given optimization time resources than standard hybrid methods that employ fixed parameters, and that the technique is less sensitive to these parameter settings. We apply this framework to three different optimization problems, compare our results to the standard hybrid methods, and show quantitatively that careful management of this tradeoff is necessary to achieve the full potential of an EA/PLSA combination.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:8 ,  Issue: 2 )