Cart (Loading....) | Create Account
Close category search window
 

Meta-Lamarckian learning in memetic algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yew Soon Ong ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore ; Keane, A.J.

Over the last decade, memetic algorithms (MAs) have relied on the use of a variety of different methods as the local improvement procedure. Some recent studies on the choice of local search method employed have shown that this choice significantly affects the efficiency of problem searches. Given the restricted theoretical knowledge available in this area and the limited progress made on mitigating the effects of incorrect local search method choice, we present strategies for MA control that decide, at runtime, which local method is chosen to locally improve the next chromosome. The use of multiple local methods during a MA search in the spirit of Lamarckian learning is here termed Meta-Lamarckian learning. Two adaptive strategies for Meta-Lamarckian learning are proposed in this paper. Experimental studies with Meta-Lamarckian learning strategies on continuous parametric benchmark problems are also presented. Further, the best strategy proposed is applied to a real-world aerodynamic wing design problem and encouraging results are obtained. It is shown that the proposed approaches aid designers working on complex engineering problems by reducing the probability of employing inappropriate local search methods in a MA, while at the same time, yielding robust and improved design search performance.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:8 ,  Issue: 2 )

Date of Publication:

April 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.