By Topic

Effective elastic modulus of nano-particles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dingreville, R. ; Sch. of Mech. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Jiamnin Qu ; Cherkaoui, M.

Atoms at a free surface experience a different local environment than do atoms in the bulk of a material. As a result, the equilibrium position and energy of these atoms will, in general, be different from bulk positions and bulk energies. In traditional continuum mechanics, such interfacial free energy is typically neglected because it is associated with only a couple of layers of atoms near the surface and the ratio of the volume occupied by the surface atoms and the total volume is extremely small. However, for nano-size particles, the surface to volume ratio becomes significant, so does the effects of surface free energy. In this paper, a framework is developed to incorporate the surface free energy into the continuum mechanics theory. Based on this approach, it is shown that the effective modulus of a particle does depend on the particle size. Although such size dependency is negligible for larger size particles, it becomes significant when the particle shrinks to nanometer size.

Published in:

Advanced Packaging Materials: Processes, Properties and Interfaces, 2004. Proceedings. 9th International Symposium on

Date of Conference: