By Topic

Markov-chain Monte-Carlo approach for association probability evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cong, S. ; Dept. of Electr. Eng., Wright State Univ., Dayton, OH, USA ; Hong, L. ; Wicker, D.

Data association is one of the essential parts of a multiple-target-tracking system. The paper introduces a report-track association-evaluation technique based on the well known Markov-chain Monte-Carlo (MCMC) method, which estimates the statistics of a random variable by way of efficiently sampling the data space. An important feature of this new association-evaluation algorithm is that it can approximate the marginal association probability with scalable accuracy as a function of computational resource available. The algorithm is tested within the framework of a joint probabilistic data association (JPDA). The result is compared with JPDA tracking with Fitzgerald's simple JPDA data-association algorithm. As expected, the performance of the new MCMC-based algorithm is superior to that of the old algorithm. In general, the new approach can also be applied to other tracking algorithms as well as other fields where association of evidence is involved.

Published in:

Control Theory and Applications, IEE Proceedings -  (Volume:151 ,  Issue: 2 )