By Topic

Quality estimation of resistance spot welding by using pattern recognition with neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yongjoon Cho ; Dept. of Mech. Eng., Univ. of Michigan, Ann Arbor, MI, USA ; Rhee, Sehun

A quality estimation system of resistance spot welding has been developed using a dynamic resistance pattern. Dynamic resistance is monitored in the primary circuit of the welding machine and is mapped into a bipolarized vector for pattern recognition. The Hopfield neural network classifies the pattern vectors and utilizes them to estimate weld quality. Weld strength measurements have been made to examine the performance of the estimation system. Good agreement is obtained between the classified results and tensile-shear strengths. For a better understanding of the estimation process of the network, an example in which the dynamic resistance is classified into the stored pattern is also illustrated.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:53 ,  Issue: 2 )