By Topic

Adaptive asymptotic Bayesian equalization using a signal space partitioning technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ren-Jr Chen ; Dept. of Commun. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Wen-Rong Wu

The Bayesian solution is known to be optimal for symbol-by-symbol equalizers; however, its computational complexity is usually very high. The signal space partitioning technique has been proposed to reduce complexity. It was shown that the decision boundary of the equalizer consists of a set of hyperplanes. The disadvantage of existing approaches is that the number of hyperplanes cannot be controlled. In addition, a state-search process, that is not efficient for time-varying channels, is required to find these hyperplanes. In this paper, we propose a new algorithm to remedy these problems. We propose an approximate Bayesian criterion that allows the number of hyperplanes to be arbitrarily set. As a consequence, a tradeoff can be made between performance and computational complexity. In many cases, the resulting performance loss is small, whereas the computational complexity reduction can be large. The proposed equalizer consists of a set of parallel linear discriminant functions and a maximum operation. An adaptive method using stochastic gradient descent has been developed to identify the functions. The proposed algorithm is thus inherently applicable to time-varying channels. The computational complexity of this adaptive algorithm is low and suitable for real-world implementation.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 5 )