Cart (Loading....) | Create Account
Close category search window
 

Multiharmonic source-pull/load-pull active setup based on six-port reflectometers: influence of the second harmonic source impedance on RF performances of power transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bergeault, E. ; Dept. Commun. et Electronique, Ecole Nat. Superieure des Telecommun., Paris, France ; Gibrat, O. ; Bensmida, S. ; Huyart, B.

An original measurement system for nonlinear RF power-transistor characterization is presented. This new setup enables the measurement and optimization of output power and/or power-added efficiency (PAE) using active harmonic tuning and six-port reflectometers as vector network analyzers. Two active loops are inserted at both ports of transistors in order to independently control the source and load impedances at the fundamental and at the second harmonic frequency. To the authors' knowledge, this is the only active technique that allows a complete automated multiharmonic load-pull/source-pull measurement system. Experimental results are shown for a commercial GaAs MESFET power transistor at 2 GHz.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:52 ,  Issue: 4 )

Date of Publication:

April 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.