By Topic

Characterizing the synchronizability of small-world dynamical networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jinhu Lu ; Inst. of Syst. Sci., Acad. Sinica, Beijing, China ; Xinghuo Yu ; Guanrong Chen ; Daizhan Cheng

Many real-world complex networks display a small-world feature-a high degree of clustering and a small average distance. We show that the maximum synchronizability of a network is completely determined by its associated feedback system, which has a precise meaning in terms of synchronous communication. We introduce a new concept of synchronizability matrix to characterize the maximum synchronizability of a network. Several new concepts, such as sensitive edge and robust edge, are proposed for analyzing the robustness and fragility of synchronization of a network. Using the knowledge of synchronizability, we can purposefully increase the robustness of the network synchronization and prevent it from attacks. Some applications in small-world networks are also discussed briefly.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:51 ,  Issue: 4 )