By Topic

A simultaneous perturbation stochastic approximation-based actor-critic algorithm for Markov decision processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bhatnagar, S. ; Dept. of Comput. Sci. & Autom., Indian Inst. of Sci., Bangalore, India ; Kumar, S.

A two-timescale simulation-based actor-critic algorithm for solution of infinite horizon Markov decision processes with finite state and compact action spaces under the discounted cost criterion is proposed. The algorithm does gradient search on the slower timescale in the space of deterministic policies and uses simultaneous perturbation stochastic approximation-based estimates. On the faster scale, the value function corresponding to a given stationary policy is updated and averaged over a fixed number of epochs (for enhanced performance). The proof of convergence to a locally optimal policy is presented. Finally, numerical experiments using the proposed algorithm on flow control in a bottleneck link using a continuous time queueing model are shown.

Published in:

Automatic Control, IEEE Transactions on  (Volume:49 ,  Issue: 4 )