By Topic

Local equilibrium controllability of multibody systems controlled via shape change

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shen, J. ; Dept. of Aerosp. Eng., Univ. of Michigan, Ann Arbor, MI, USA ; McClamroch, N.H. ; Bloch, A.M.

We study local equilibrium controllability of shape controlled multibody systems. The multibody systems are defined on a trivial principal fiber bundle by a Lagrangian that characterizes the base body motion and shape dynamics. A potential dependent on an advected parameter, e.g., uniform gravitational potential, is considered. This potential breaks base body symmetries, but a symmetry subgroup is assumed to exist. Symmetric product formulas are derived and important properties are obtained for symmetric products of horizontal shape control vector fields and a potential vector field that is dependent on an advected parameter. Based on these properties, sufficient conditions for local equilibrium controllability and local fiber equilibrium controllability are developed. These results are applied to two classes of shape controlled multibody systems in a uniform gravitational field: multibody attitude systems and neutrally buoyant multibody underwater vehicles.

Published in:

Automatic Control, IEEE Transactions on  (Volume:49 ,  Issue: 4 )