By Topic

Feedback control systems for micropositioning tasks with hysteresis compensation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
A. Cavallo ; Dipt. di Ingegneria dell'Informazione Seconda, Universita degli Studi di Napoli, Aversa, Italy ; C. Natale ; S. Pirozzi ; C. Visone
more authors

This paper proposes the analysis of a control loop system employing a Terfenol-D actuator driving a real mechanical load. The aim of the paper is to analyze the performances of such a system when a strategy of hysteresis compensation is employed. Such strategy has demonstrated its effectiveness in simpler feedback systems (with no mechanical load) by improving the tracking error, decreasing the control signal so as to avoid saturation and harmful stress to the actuator. As a consequence, the algorithm allows also to reduce energy losses in the actuator.

Published in:

IEEE Transactions on Magnetics  (Volume:40 ,  Issue: 2 )