By Topic

Signal-to-noise ratio mismatch for low-density parity-check coded magnetic recording channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Weijun Tan ; Sch. of Electr. & Comput. Eng., Univ. of Oklahoma, Norman, OK, USA ; Cruz, J.R.

Signal-to-noise ratio (SNR) mismatch is found in simulations to have great influence on the performance of low-density parity-check coded magnetic recording channels. While an inappropriate SNR mismatch degrades the performance dramatically, a properly selected optimum SNR mismatch can improve it significantly. In this paper we analyze the causes of this phenomenon and find optimum SNR mismatch values for specific magnetic recording systems with physical impairments such as electronic and media noise as well as erasures, using both density evolution analysis and Monte Carlo simulations. We observed that two characteristics of the probability density function (pdf) of the channel message, namely, the Gaussianity and the variance-to-mean ratio (VMR) have a major effect on the SNR mismatch. Generally speaking, if the channel message is approximately Gaussian-distributed and the VMR is larger than two, a negative SNR mismatch substantially improves the system performance. Numerical results show that for a magnetic recording channel with additive white Gaussian noise (AWGN), the optimum SNR mismatch is about -3 to -2 dB, while for a channel with 10% AWGN and 90% media noise, is about -10 to -8 dB, whether erasures are present or not.

Published in:

Magnetics, IEEE Transactions on  (Volume:40 ,  Issue: 2 )