Cart (Loading....) | Create Account
Close category search window
 

Differentiation of discrete multidimensional signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Farid, H. ; Comput. Sci. Dept., Dartmouth Coll., Hanover, NH, USA ; Simoncelli, E.P.

We describe the design of finite-size linear-phase separable kernels for differentiation of discrete multidimensional signals. The problem is formulated as an optimization of the rotation-invariance of the gradient operator, which results in a simultaneous constraint on a set of one-dimensional low-pass prefilter and differentiator filters up to the desired order. We also develop extensions of this formulation to both higher dimensions and higher order directional derivatives. We develop a numerical procedure for optimizing the constraint, and demonstrate its use in constructing a set of example filters. The resulting filters are significantly more accurate than those commonly used in the image and multidimensional signal processing literature.

Published in:

Image Processing, IEEE Transactions on  (Volume:13 ,  Issue: 4 )

Date of Publication:

April 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.