Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A perceptual subspace approach for modeling of speech and audio signals with damped sinusoids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jensen, J. ; Dept. of Mediamatics, Delft Univ. of Technol., Netherlands ; Heusdens, R. ; Jensen, S.H.

The problem of modeling a signal segment as a sum of exponentially damped sinusoidal components arises in many different application areas, including speech and audio processing. Often, model parameters are estimated using subspace based techniques which arrange the input signal in a structured matrix and exploit the so-called shift-invariance property related to certain vector spaces of the input matrix. A problem with this class of estimation algorithms, when used for speech and audio processing, is that the perceptual importance of the sinusoidal components is not taken into account. In this work we propose a solution to this problem. In particular, we show how to combine well-known subspace based estimation techniques with a recently developed perceptual distortion measure, in order to obtain an algorithm for extracting perceptually relevant model components. In analysis-synthesis experiments with wideband audio signals, objective and subjective evaluations show that the proposed algorithm improves perceived signal quality considerable over traditional subspace based analysis methods.

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:12 ,  Issue: 2 )