Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A new fuzzy cover approach to clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jung-Hsien Chiang ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Shihong Yue ; Zong-Xian Yin

This paper presents a new fuzzy cover-based clustering algorithm. In the proposed algorithm, the concept of fuzzy cover and objective function are employed to identify holding points in the dataset, and we associate these holding points together to build up the backbones of the final clusters. Three specific objectives underlie the presentation of the proposed approach in this paper. The first is to describe mathematical formulation of the fuzzy covers, and the second is to summarize the detailed procedure of constructing fuzzy covers and splicing them into clusters. The third goal is to demonstrate that this approach is able to find out reasonable representative patterns in the final clusters. We illustrate this approach with four examples in order to verify the clustering effectiveness.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:12 ,  Issue: 2 )