By Topic

Linear fuzzy clustering techniques with missing values and their application to local principal component analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Honda, K. ; Dept. of Ind. Eng., Osaka Prefecture Univ., Japan ; Ichihashi, H.

In this paper, we propose two methods for partitioning an incomplete data set with missing values into several linear fuzzy clusters by extracting local principal components. One is an extension of fuzzy c-varieties clustering that can be regarded as the algorithm for the local principal component analysis of fuzzy covariance matrices. The other is a simultaneous application of fuzzy clustering and principal component analysis of fuzzy correlation matrices. Both methods estimate prototypes ignoring only missing values and they need no preprocessing of data such as the elimination of samples with missing values or the imputation of missing elements. Numerical examples show that the methods provide useful tools for interpretation of the local structures of a database.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:12 ,  Issue: 2 )