By Topic

Fast inference in SAM fuzzy systems using transition matrices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aja-Fernandez, S. ; Lab. de Procesado de Imagen, Univ. de Valladolid, Spain ; Alberola-Lopez, C.

Fast inference using transition matrices (FITM) is a new fast algorithm for performing inferences in fuzzy systems. It is based on the assumption that fuzzy inputs can be expressed as a linear composition of the fuzzy sets used in the rule base. This representation let us interpret a fuzzy set as a vector, so we can just work with the coordinates of it instead of working with the whole set. The inference is made using transition matrices. The key of the method is the fact that a lot of operations can be precomputed offline to obtain the transition matrices, so actual inferences are reduced to a few online matrix additions and multiplications. The algorithm is designed for the standard additive model using the sum-product inference composition.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:12 ,  Issue: 2 )