By Topic

Processing string fusion approach investigation for automated sea mine classification in shallow water

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aridgides, T. ; Lockheed Martin Naval Electron. & Surveillance Syst., Syracuse, NY, USA ; Fernandez, M. ; Dobeck, G.

A novel sea mine computer-aided-detection / computer-aided-classification (CAD/CAC) processing string has been developed. The overall CAD/CAC processing string consists of pre-processing, adaptive clutter filtering (ACF), normalization, detection, feature extraction, feature orthogonalization, optimal subset feature selection, classification and fusion processing blocks. The range-dimension ACF is matched both to average mine highlight and shadow information, while also adaptively suppressing background clutter. For each detected object, features are extracted and processed through an orthogonalization transformation, enabling an efficient application of the optimal log-likelihood-ratio-test (LLRT) classification rule, in the orthogonal feature space domain. The classified objects of 4 distinct processing strings are fused using the classification confidence values as features and "M-out-of-N", or LLRT-based fusion rules. The utility of the overall processing strings and their fusion was demonstrated with new shallow water high-resolution sonar imagery data. The processing string detection and classification parameters were tuned and the string classification performance was optimized, by appropriately selecting a subset of the original feature set. Two significant improvements were made to the CAD/CAC processing string by employing sub-image adaptive clutter filtering (SACF) and utilizing a repeated application of the subset feature selection/LLRT classification blocks. It was shown that LLRT-based fusion of the CAD/CAC processing strings outperforms the "M-out-of-N" algorithms and results in up to an eight-fold false alarm rate reduction, compared to the best single CAD/CAC processing string results, while maintaining a constant correct mine classification probability.

Published in:

OCEANS 2003. Proceedings  (Volume:2 )

Date of Conference:

22-26 Sept. 2003