By Topic

Development and analysis of a folded shorted-patch antenna with reduced size

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
RongLin Li ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; G. DeJean ; M. M. Tentzeris ; J. Laskar

The length of a wall-shorted rectangular patch antenna can be reduced from ∼λ0/4 to ∼λ0/8 by a simple folding operation, which results in a stacked shorted-patch (S-P) structure with a resonant frequency that can be controlled by modifying the distance between the stacked (lower and upper) shorted-patches. A theoretical analysis based on a simple transmission-line model is presented and compared with numerical simulations, showing good agreement if the height of the folded patch is much smaller than the patch length. The physical insight of the variation of the resonant frequency for this reduced-size antenna can be understood by considering the antenna as a shorted patch loaded with a capacitor. An experimental verification is carried out for a 15 mm×15 mm×6 mm folded S-P antenna prototype designed for the 2.4 GHz ISM band that can achieve a 10-dB return loss bandwidth of 4% and results in a nearly omni-directional radiation pattern.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:52 ,  Issue: 2 )