Cart (Loading....) | Create Account
Close category search window
 

An efficient recursive procedure for evaluating the impedance matrix of linear and planar fractal arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Werner, D.H. ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; Baldacci, D. ; Werner, P.L.

The self-similar geometrical properties of fractal arrays are exploited in this paper to develop fast recursive algorithms for efficient evaluation of the associated impedance matrices as well as driving point impedances. The methodology is demonstrated by considering two types of uniformly excited fractal arrays consisting of side-by-side half-wave dipole antenna elements. These examples include a triadic Cantor linear fractal array and a Sierpinski carpet planar fractal array. This class of self-similar antenna arrays become significantly large at higher order stages of growth and utilization of fractal analysis allows the impedance matrix, and hence the driving point impedances, to be obtained much more efficiently than would be possible using conventional analysis techniques.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:52 ,  Issue: 2 )

Date of Publication:

Feb. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.