By Topic

An improved maximum likelihood approach to image reconstruction using ordered subsets and data subdivisions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jinhua Sheng ; Dept. of Electr. & Comput. Eng., Univ. of Illinois, Chicago, IL, USA ; Derong Liu

Iterative algorithms such as maximum likelihood expectation maximization (ML-EM) algorithm are rapidly becoming the standard for image reconstruction in emission computed tomography. The maximum likelihood approach provides images with superior noise characteristics compared to conventional filtered backprojection algorithm. A major drawback of the iterative image reconstruction methods is their high computational cost. In this paper, we develop a new algorithm called the improved ordered subset expectation maximization (IOS-EM) algorithm. This algorithm modifies the number of projections in each subset and the step size (i.e., the relaxation factor) for each iteration in order to recover various frequency components in early iteration steps. In the method presented in this paper, the number of projections in a subset increases and the step size decreases after each iteration. In addition, pixel data are grouped into subdivisions to accelerate image reconstruction. Experimental results show that the IOS-EM algorithm can provide high quality reconstructed images at a small number of iterations.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:51 ,  Issue: 1 )