By Topic

Model reference adaptive predictive control for a variable-frequency oil-cooling machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ching-Chih Tsai ; Dept. of Electr. Eng., Nat. Chung Hsing Univ., Taichung, Taiwan ; Chih-Hung Huang

This paper develops methodologies and techniques for the design, analysis, and implementation of a model reference adaptive predictive temperature controller for a variable-frequency oil-cooling machine, suited for cooling high-speed machine tools. The oil-cooling process is modeled experimentally as a first-order system model with a time delay and its system parameters are identified using the recursive least-square method. Based on this model, a model reference adaptive predictive controller is proposed for achieving set-point tracking and robustness. A real-time model reference adaptive predictive control algorithm is then presented and implemented utilizing a stand-alone digital signal processor TMS320F243 from Texas Instruments Incorporated. The experimental results show that the proposed control method is proven capable of giving satisfactory performance under set-point changes, fixed loads, and load changes.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:51 ,  Issue: 2 )