Cart (Loading....) | Create Account
Close category search window
 

Anatomical-based FDG-PET reconstruction for the detection of hypo-metabolic regions in epilepsy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Baete, K. ; Dept. of Nucl. Med., Katholieke Univ. Leuven, Belgium ; Nuyts, J. ; Van Paesschen, W. ; Suetens, P.
more authors

Positron emission tomography (PET) of the cerebral glucose metabolism has shown to be useful in the presurgical evaluation of patients with epilepsy. Between seizures, PET images using fluorodeoxyglucose (FDG) show a decreased glucose metabolism in areas of the gray matter (GM) tissue that are associated with the epileptogenic region. However, detection of subtle hypo-metabolic regions is limited by noise in the projection data and the relatively small thickness of the GM tissue compared to the spatial resolution of the PET system. Therefore, we present an iterative maximum-a-posteriori based reconstruction algorithm, dedicated to the detection of hypo-metabolic regions in FDG-PET images of the brain of epilepsy patients. Anatomical information, derived from magnetic resonance imaging data, and pathophysiological knowledge was included in the reconstruction algorithm. Two Monte Carlo based brain software phantom experiments were used to examine the performance of the algorithm. In the first experiment, we used perfect, and in the second, imperfect anatomical knowledge during the reconstruction process. In both experiments, we measured signal-to-noise ratio (SNR), root mean squared (rms) bias and rms standard deviation. For both experiments, bias was reduced at matched noise levels, when compared to post-smoothed maximum-likelihood expectation-maximization (ML-EM) and maximum a posteriori reconstruction without anatomical priors. The SNR was similar to that of ML-EM with optimal post-smoothing, although the parameters of the prior distributions were not optimized. We can conclude that the use of anatomical information combined with prior information about the underlying pathology is very promising for the detection of subtle hypo-metabolic regions in the brain of patients with epilepsy.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:23 ,  Issue: 4 )

Date of Publication:

April 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.