By Topic

Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Fang, Q. ; Thayer Sch. of Eng., Dartmouth Coll., Hanover, NH, USA ; Meaney, P.M. ; Geimer, S.D. ; Streltsov, A.V.
more authors

An efficient Gauss-Newton iterative imaging technique utilizing a three-dimensional (3-D) field solution coupled to a two-dimensional (2-D) parameter estimation scheme (3-D/2-D) is presented for microwave tomographic imaging in medical applications. While electromagnetic wave propagation is described fully by a 3-D vector field, a 3-D scalar model has been applied to improve the efficiency of the iterative reconstruction process with apparently limited reduction in accuracy. In addition, the image recovery has been restricted to 2-D but is generalizable to three dimensions. Image artifacts related primarily to 3-D effects are reduced when compared with results from an entirely two- dimensional inversion (2-D/2-D). Important advances in terms of improving algorithmic efficiency include use of a block solver for computing the field solutions and application of the dual mesh scheme and adjoint approach for Jacobian construction. Methods which enhance the image quality such as the log-magnitude/unwrapped phase minimization were also applied. Results obtained from synthetic measurement data show that the new 3-D/2-D algorithm consistently outperforms its 2-D/2-D counterpart in terms of reducing the effective imaging slice thickness in both permittivity and conductivity images over a range of inclusion sizes and background medium contrasts.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:23 ,  Issue: 4 )