By Topic

A real-time algorithm for timeslot assignment in multirate return channels of interactive satellite multimedia networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ki-Dong Lee ; Digital Broadcasting Res. Div., Electron. & Telecommun. Res. Inst., Daejeon, South Korea ; Kun-Nyeong Chang

Since the digital video broadcast-return channel via satellite (DVB-RCS) standard was released in 2000, developing an interactive satellite multimedia (ISM) network has become a hot issue. In order to provide high-speed multimedia services using a DVB-RCS system, it is important to efficiently and dynamically assign the timeslots to a number of terminals according to their various demands. Also, it is imperative to improve the degradation of link quality due to rain-fade attenuation in Ka-band satellite communications. As a result, multirate superframe structures should be implemented for a relatively low data rate at the cost of stable connection to terminals in rain-fade regions and a relatively high data rate to terminals in clear-sky regions. Timeslot scheduling in this environment is studied in this paper. We mathematically formulate the timeslot assignment problem as a nonlinear integer programming problem and develop an efficient real-time solution algorithm. Extensive simulation results show that our algorithm successfully finds a feasible solution with optimality gap less than 0.05% within about 5 ms at Pentium III PC. We believe that our algorithm can be utilized as a guideline in developing real-time timeslot assignment algorithms for ISM networks.

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:22 ,  Issue: 3 )