By Topic

MPLS-based satellite constellation networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Donner, A. ; Inst. of Commun. & Navigation, German Aerosp. Center, Wessling, Germany ; Berioli, M. ; Werner, M.

Nongeostationary satellite constellations with intersatellite links are a challenge for networking due to their continuously changing topology. In order to make maximal use of the network's capacities, special attention has to be paid to routing and traffic engineering. Multiprotocol label switching (MPLS) as underlying protocol is an interesting candidate for this task since it offers many possibilities to exert influence on traffic flows and supports today's dominating Internet protocol traffic very well. This paper describes a general MPLS-based networking concept for satellite networks and discusses different scenarios considering the particularities and constraints of the dynamic topology. Functional elements of MPLS like ingress, egress, or core routers have to be mapped onto the physical entities of the network and prerequisites for traffic engineering are discussed. Routing and rerouting of paths is of key interest since this affects route computation effort and routing performance. Thus, an analytical estimation of routing effort is deduced and numerical and simulation results are presented.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:22 ,  Issue: 3 )