By Topic

Theoretical and experimental analysis of the dependence of a signal's degree of polarization on the optical data spectrum

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nezam, S.M.R.M. ; Dept. of Electr. Eng.-Syst., Univ. of Southern California, Los Angeles, CA, USA ; McGeehan, J.E. ; Willner, A.E.

We show theoretically and experimentally the relationship between a signal's degree of polarization (DOP), all-order polarization mode dispersion (PMD), and the optical spectrum (and hence the data modulation format and pulse width), and that these effects must be taken into account when using the DOP for differential group delay (DGD) monitoring. We explain the theory behind how all-order PMD affects a signal's DOP, and observe the pulse-width dependence for 10-, 20-, and 40-Gb/s return-to-zero (RZ) systems as the duty cycle changes. We then analyze and show (via simulation and experimentation) the effects of different data modulation formats (RZ, carrier-suppressed RZ, alternate-chirped RZ, and differential phase-shift keying) on the DOP in a DGD monitor. We conclude that the measurable DGD range and DOP sensitivity in DOP-based DGD monitors are dependent on a signal's pulse width and the data modulation format. We also show the theory behind the effects of first- and second-order PMD on the maximum and minimum DOP.

Published in:

Lightwave Technology, Journal of  (Volume:22 ,  Issue: 3 )