By Topic

Compensating fiber gratings for source flatness to reduce multiple-access interferences in optical CDMA network coder/decoders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jen-Fa Huang ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Taiwan ; Chen-Mu Tsai ; Yu-Lung Lo

A fiber-Bragg-grating (FBG)-based optical code-division multiple-access (OCDMA) network coder/decoder (codec) is investigated for its interference suppression induced by nonflattened broad-band lightwave sources. Since each network user with different signature address code has different spectral distribution, the nonflattened light sources will cause multiple-access interference (MAI). Flatness compensation schemes are proposed to solve the MAI effects induced by nonflattened broad-band light sources. By arranging the same coding scheme but in different spectral coding band, spectral chips from FBG coder/compensator will incoherently power summed in the photodetectors to approach a more flattened power level. Signal-to-interference ratio (SIR) performances are evaluated with such compensation method for the discussed OCDMA network.

Published in:

Journal of Lightwave Technology  (Volume:22 ,  Issue: 3 )