By Topic

Multiparadigm modeling in embedded systems design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
K. D. Muller-Glaser ; Inst. for Inf. Process. Technol., Univ. of Karlsruhe, Germany ; G. Frick ; E. Sax ; M. Kuhl

Embedded electronic systems for monitoring and control of technical processes (electronic control unit-ECU) are systems comprised of heterogeneous components (hardware, software, sensors, actuators, power electronics), thus making high demands on their development. Describing different aspects and views of the whole system, subsystem, or component requires according modeling paradigms for requirements specification, design, hardware implementation, software code generation, verification, integration, and testing. The first part of the paper surveys characteristic ECU features and describes a design strategy and the related technology, bringing out the necessity of multiparadigm modeling. Examples from automotive ECU applications are used throughout the paper. With respect to the problem that currently available tools provide insufficient support, integration strategies for multiparadigm modeling based on multiple tools are surveyed in the second part, concluding with examples from our own research activities.

Published in:

IEEE Transactions on Control Systems Technology  (Volume:12 ,  Issue: 2 )