By Topic

Unsupervised learning for expert-based software quality estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shi Zhong ; Dept. of Comput. Sci. & Eng., Florida Atlantic Univ., Boca Raton, FL, USA ; T. M. Khoshgoftaar ; N. Seliya

Current software quality estimation models often involve using supervised learning methods to train a software quality classifier or a software fault prediction model. In such models, the dependent variable is a software quality measurement indicating the quality of a software module by either a risk-based class membership (e.g., whether it is fault-prone or not fault-prone) or the number of faults. In reality, such a measurement may be inaccurate, or even unavailable. In such situations, this paper advocates the use of unsupervised learning (i.e., clustering) techniques to build a software quality estimation system, with the help of a software engineering human expert. The system first clusters hundreds of software modules into a small number of coherent groups and presents the representative of each group to a software quality expert, who labels each cluster as either fault-prone or not fault-prone based on his domain knowledge as well as some data statistics (without any knowledge of the dependent variable, i.e., the software quality measurement). Our preliminary empirical results show promising potentials of this methodology in both predicting software quality and detecting potential noise in a software measurement and quality dataset.

Published in:

High Assurance Systems Engineering, 2004. Proceedings. Eighth IEEE International Symposium on

Date of Conference:

25-26 March 2004