System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Generalised neuron-based adaptive power system stabiliser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chaturvedi, D.K. ; Dept. of Electr. Eng., Dayalbagh Educ.al Inst., Agra, India ; Malik, O.P. ; Kalra, P.K.

Artificial neural networks (ANNs) can be used as intelligent controllers to control nonlinear, dynamic systems through learning, which can easily accommodate the nonlinearities and time dependencies. However, they require long training time and large numbers of neurons to deal with complex problems. To overcome these drawbacks, a generalised neuron (GN) has been developed that requires much smaller training data and shorter training time. Taking benefit of these characteristics of the GN, a new generalised neuron-based adaptive power system stabiliser (GNPSS) is proposed. The GNPSS consists of a GN as an identifier, which tracks the dynamics of the plant, and a GN as a controller to damp low-frequency oscillations. Results show that the proposed adaptive GNPSS can provide a consistently good dynamic performance of the system over a wide range of operating conditions.

Published in:

Generation, Transmission and Distribution, IEE Proceedings-  (Volume:151 ,  Issue: 2 )